nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.41 34-40
关联规则挖掘算法的研究与实现
基金项目(Foundation): 南平市自然科学基金项目“基于概念格的大学生心理健康数据挖掘技术研究”(N2023J007)
邮箱(Email):
DOI: 10.13874/j.cnki.62-1171/g4.2025.05.006
摘要:

关联规则挖掘是数据挖掘的一个重要分支,在众多实际应用中发挥着举足轻重的作用.对关联规则的Apriori算法思想展开了深入剖析,针对该算法存在的不足之处,尝试将形式概念理论引入关联规则挖掘中,通过探讨频繁项集与概念格之间的潜在关系,提出了一种基于概念格的频繁项集生成算法.为了验证算法的有效性和优越性,以某高校大学生心理健康数据作为形式背景,开展了关联分析实验,结果表明在支持度较低的情况下,基于概念格的频繁项集生成算法展现出了显著的优势,能够更为高效、准确地挖掘出隐藏在数据中的有价值信息.

Abstract:

Association rule mining is an important branch of data mining and plays a crucial role in a wide range of practical applications. This paper provides an in-depth analysis of the Apriori algorithm for association rule mining and addresses its inherent limitations by introducing formal concept analysis(FCA)into the mining process. By exploring the potential relationship between frequent itemsets and concept lattices,a new frequent itemset generation algorithm based on concept lattices is proposed.To verify the effectiveness and superiority of the proposed algorithm,an association analysis experiment was conducted using college students' mental health data from a university as the formal context. The experimental results demonstrate that under lowsupport conditions,the concept lattice-based algorithm exhibits significant advantages,enabling more efficient and accurate extraction of valuable hidden information from data.

参考文献

[1]吴春旭,贾银山,于红绯.一种Apriori算法的高效实现方法及其应用[J].辽宁石油化工大学学报,2023,43(2):78-85.

[2]魏坤,王芳,黄树成.改进的频繁模式挖掘算法[J].计算机与数字工程,2021,49(11):2175-2179.

[3]王伟,储泽楠,韩毅,等.基于MapReduce的Apriori前后项约束关联规则改进算法[J].信阳师范学院学报(自然科学版),2020,33(3):448-453.

[4] Moubayed A,Injadat M N,Shami A,et al. Relationship between Student Engagement and Performance in e-Learning Environment Using Association Rules[J]. 2021,1872(3):012-024.

[5]徐伟华,李金海,魏玲,等.形式概念分析理论与应用[M].北京:科学出版社,2016.

[6]刘美玉,祁建军,刘伟.三支概念格中的关联规则提取算法[J].西安交通大学学报,2021,55(9):189-196.

[7]周向荣,吴清寿.概念格的频繁项集生成算法[J].武夷学院学报,2023,42(3):38-44.

[8] Jian-Min Ma,Yee Leung,Wen-Xiu Zhang. Attribute reductions in object-oriented concept lattices[J]. International Journal of Machine Learning and Cybernetics,2014,5(5):789-813.

[9] Supriyono,Ferine Kiki Farida,Puspitasari Diana,et al.Implementation of data mining with Apriori techniques to determine the pattern of purchasing of agricultural equipment(Case Study:XYZ Store)[J]. Journal of Physics:Conference Series,2021,1933(1):012-029.

[10] Zhou Y F,Li J J,Yang H L,et al. Knowledge Structure Construction and Skill Reduction Methods Based on Multi-scale Context[J].Journal of Experimental&Theoretical Artificial Intelligence,2023:1-20.

[11]胡可云,陆玉昌,石纯一.基于概念格的分类和关联规则的集成挖掘方法[J].软件学报,2000(11):1478-1484.

[12]周银凤,李进金,冯丹露,等.形式背景下的学习路径与技巧评估[J].模式识别与人工智能,2021,34(12):1039-1084.

基本信息:

DOI:10.13874/j.cnki.62-1171/g4.2025.05.006

中图分类号:TP311.13

引用信息:

[1]亓文娟.关联规则挖掘算法的研究与实现[J].河西学院学报,2025,41(05):34-40.DOI:10.13874/j.cnki.62-1171/g4.2025.05.006.

基金信息:

南平市自然科学基金项目“基于概念格的大学生心理健康数据挖掘技术研究”(N2023J007)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文